Diatomic Molecule as Rigid Rotor
Question
Consider a molecule, such as Carbon Monoxide, which consists of two different atoms, one Carbon and one Oxygen, separated by a distance \(d\). Such a molecule can exist in quantum states of different orbital angular momentum. Each state has the energy \[ \epsilon_l={\hbar^2 \over 2I}l(l+1)\] where \(I=\mu d^2\) is the moment of inertia of the molecule about an axis through its centre of mass and \(\mu\) is the reduced mass defined by \(\frac 1\mu=\frac{1}{m_1} + \frac{1}{m_2}\). \(l=0, 1, 2, \ldots\) is the quantum number associated with the orbital angular momentum. Each energy level of the rotating molecule has the degeneracy \(g_l=2l+1\).
- Find the general expression for the canonical partition function \(Z\).
- Show that for high temperatures, \(Z\) can be approximated by an integral and calculate this integral.
- Evaluate the high temperature mean energy \(E\) and the heat capacity \(C_V\).
- Find the low-temperature approximations to the canonical partition function, the mean energy \(E\) and the heat capacity \(C_V\).
Solution
- The generic partition function is given by
\begin{eqnarray} Z&=&\sum_{j=0}^{\infty} g_j e^{-E_j \beta} \nonumber \\ &=&\sum_{l=0}^{\infty} (2l+1) e^{-l(l+1){\hbar^2 \over 2I}\beta} \nonumber \end{eqnarray}
-
For high temperatures, the energy spacing between the energy levels is small compared to \(k_B T\), so the summation can be replaced by the integral
\begin{eqnarray} Z&=&\int_0^\infty(2l+1)e^{-l(l+1){\hbar^2 \over 2I}\beta}dl \nonumber \\ &=&\int_0^\infty e^{{-\beta \hbar^2 l(l+1) \over 2I}}d(l(l+1)) \nonumber \\ &=&{2I \over \beta \hbar^2} \nonumber \end{eqnarray}
-
Finding the energy in the high-temperature limit.
\begin{eqnarray} \lt E \gt &=&-{\partial \over \partial \beta}\ln Z \nonumber \\ &=&-{\partial \over \partial \beta}\ln{2I\over \beta \hbar^2} \nonumber \\ &=&\frac 1\beta = k_B T \nonumber \end{eqnarray}
And the heat capacity: \[C_V={\partial \lt E \gt \over \partial T} = k_B\]
-
For the low-temperature approximation, most of the particles will be in the ground state, so we can approximation the partition function by simply the first two terms like so:
\begin{eqnarray} Z&=&\sum_{l=0}^{\infty} (2l+1) e^{-l(l+1){\hbar^2 \over 2I}\beta} \nonumber \\ &=&1+3e^{-\beta \hbar^2 / I} \nonumber \end{eqnarray}
So the average energy again is
\begin{eqnarray} \lt E \gt &=&-{\partial \over \partial \beta}\ln Z \nonumber \\ &=&-{\partial \over \partial \beta}\ln\bigg({1+3e^{-{\hbar^2 \over I} \beta}}\bigg) \nonumber \\ &=&-{3·\frac{-\hbar^2}{I}·e^{-\frac{\hbar^2}{I}\beta} \over 1+3e^{-\frac{\hbar^2}{I}\beta}} \nonumber \\ &=&{3\hbar^2 / I \over e^{\beta \hbar^2 / I}+3} \nonumber \end{eqnarray}
For the heat capacity,
\begin{eqnarray} C_V&=&{\partial \beta \over \partial T}{\partial \over \partial \beta}\lt E \gt \nonumber \\ &=&-{1 \over k_B T^2} {\partial \over \partial \beta} \bigg({3\hbar^2 / I \over e^{\beta \hbar^2 / I}+3}\bigg) \nonumber \\ &=&{3 \hbar^4 \over k_B T^2 I^2} {e^{\hbar^2 \beta / I} \over \big(e^{\beta \hbar^2 / I} + 3\big)^2} \nonumber \\ &\approx&3k_B\bigg({\hbar^2 \over I k_B T}\bigg)^2 \exp \bigg(-\hbar^2 / I k_B T\bigg). \nonumber \end{eqnarray}