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6.2 Diatomic Molecule as Rigid Rotor

Consider a molecule, such as Carbon Monoxide, which consists of two different atoms,
one Carbon and one Oxygen, separated by a distance d. Such a molecule can exist in
quantum states of different orbital angular momentum. Each state has the energy

εl =
h̄2

2I
l(l + 1)

where I = µd2 is the moment of inertia of the molecule about an axis through its centre
of mass and µ is the reduced mass defined by 1

µ
= 1
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m2
. l = 0, 1, 2, . . . is the quantum

number associated with the orbital angular momentum. Each energy level of the rotating
molecule has the degeneracy gl = 2l + 1.

1. Find the general expression for the canonical partition function Z.

2. Show that for high temperatures, Z can be approximated by an integral and calcu-
late this integral.

3. Evaluate the high temperature mean energy E and the heat capacity CV .

4. Find the low-temperature approximations to the canonical partition function, the
mean energy E and the heat capacity CV .

Solution

1. The generic partition function is given by
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∞∑
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2. For high temperatures, the energy spacing between the energy levels is small compared
to kBT , so the summation can be replaced by the integral
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3. Finding the energy in the high-temperature limit.
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And the heat capacity:

CV =
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∂T
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4. For the low-temperature approximation, most of the particles will be in the ground
state, so we can approximation the partition function by simply the first two terms like
so:
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So the average energy again is
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For the heat capacity,
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