Diatomic Molecule as a Rigid Rotor

Matt Evans

January 26, 2013

6.2 Diatomic Molecule as Rigid Rotor

Consider a molecule, such as Carbon Monoxide, which consists of two different atoms, one Carbon and one Oxygen, separated by a distance d. Such a molecule can exist in quantum states of different orbital angular momentum. Each state has the energy

$$
\epsilon_{l}=\frac{\hbar^{2}}{2 I} l(l+1)
$$

where $I=\mu d^{2}$ is the moment of inertia of the molecule about an axis through its centre of mass and μ is the reduced mass defined by $\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \cdot l=0,1,2, \ldots$ is the quantum number associated with the orbital angular momentum. Each energy level of the rotating molecule has the degeneracy $g_{l}=2 l+1$.

1. Find the general expression for the canonical partition function Z.
2. Show that for high temperatures, Z can be approximated by an integral and calculate this integral.
3. Evaluate the high temperature mean energy E and the heat capacity C_{V}.
4. Find the low-temperature approximations to the canonical partition function, the mean energy E and the heat capacity C_{V}.

Solution

1. The generic partition function is given by

$$
\begin{aligned}
Z & =\sum_{j=0}^{\infty} g_{j} e^{-E_{j} \beta} \\
& =\sum_{l=0}^{\infty}(2 l+1) e^{-l(l+1) \frac{\hbar^{2}}{2 I} \beta}
\end{aligned}
$$

2. For high temperatures, the energy spacing between the energy levels is small compared to $k_{B} T$, so the summation can be replaced by the integral

$$
\begin{aligned}
Z & =\int_{0}^{\infty}(2 l+1) e^{-l(l+1) \frac{\hbar^{2}}{2 I} \beta} d l \\
& =\int_{0}^{\infty} e^{\frac{-\beta \hbar^{2} l(l+1)}{2 I}} d(l(l+1)) \\
& =\frac{2 I}{\beta \hbar^{2}}
\end{aligned}
$$

3. Finding the energy in the high-temperature limit.

$$
\begin{aligned}
<E> & =-\frac{\partial}{\partial \beta} \ln Z \\
& =-\frac{\partial}{\partial \beta} \ln \frac{2 I}{\beta \hbar^{2}} \\
& =\frac{1}{\beta}=k_{B} T
\end{aligned}
$$

And the heat capacity:

$$
C_{V}=\frac{\partial<E>}{\partial T}=k_{B}
$$

4. For the low-temperature approximation, most of the particles will be in the ground state, so we can approximation the partition function by simply the first two terms like so:

$$
\begin{aligned}
Z & =\sum_{l=0}^{\infty}(2 l+1) e^{-l(l+1) \frac{\hbar^{2}}{2 I} \beta} \\
& =1+3 e^{-\beta \hbar^{2} / I}
\end{aligned}
$$

So the average energy again is

$$
\begin{aligned}
<E> & =-\frac{\partial}{\partial \beta} \ln Z \\
& =-\frac{\partial}{\partial \beta} \ln \left(1+3 e^{-\frac{\hbar^{2}}{I} \beta}\right) \\
& =-\frac{3 \frac{-\hbar^{2}}{I} e^{-\frac{\hbar^{2}}{I} \beta}}{1+3 e^{-\frac{\hbar^{2}}{I} \beta}} \\
& =\frac{3 \hbar^{2} / I}{e^{\beta \hbar^{2} / I}+3}
\end{aligned}
$$

For the heat capacity,

$$
\begin{aligned}
C_{V} & =\frac{\partial \beta}{\partial T} \frac{\partial}{\partial \beta}<E> \\
& =-\frac{1}{k_{B} T^{2}} \frac{\partial}{\partial \beta}\left(\frac{3 \hbar^{2} / I}{e^{\beta \hbar^{2} / I}+3}\right) \\
& =\frac{3 \hbar^{4}}{k_{B} T^{2} I^{2}} \frac{e^{\hbar^{2} \beta / I}}{\left(e^{\beta \hbar^{2} / I}+3\right)^{2}} \\
& \approx 3 k_{B}\left(\frac{\hbar^{2}}{I k_{B} T}\right)^{2} \exp \left(-\hbar^{2} / I k_{B} T\right)
\end{aligned}
$$

